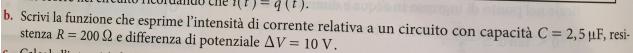
Fare i seguenti problemi

REALTÀ E MODELLI Intensità di corrente Sia $q(t) = -t^3 + 4t^2$ la quantità di carica in funzione del tempo che attraversa la sezione di un conduttore. Il tempo è misurato in secondi e $0 \le t \le 2$.

- a. Determina l'intensità media di corrente i_m , ossia la variazione della quantità di carica in un generico intervallo di tempo [t; t+h] e nell'intervallo $[0; \frac{3}{2}]$.
- b. Determina se esiste un istante t interno all'intervallo $\left[0; \frac{3}{2}\right]$ nel quale l'intensità istantanea di corrente è uguale a quella media.
- c. Determina il massimo valore dell'intensità di corrente istantanea nell'intervallo [0; 2].


[a)
$$i_m = \frac{15}{4}$$
 A; b) $t \simeq 0.6$ s; c) $i \simeq 5.33$ A]

REALTÀ E MODELLI Circuito RC In un circuito RC, la quantità di carica Q accumulata in un condensatore in funzione del tempo t è espressa dalla formula:

$$q(t) = C \cdot \Delta V \cdot \left(1 - e^{-\frac{t}{RC}}\right),$$

dove C è la capacità del condensatore, ΔV la differenza di potenziale a cui è sottoposto il condensatore e R la resistenza del conduttore inserito nel circuito

a. Scrivi la funzione che esprime l'intensità di corrente che scorre nel circuito ricordando che i(t) = q'(t).

c. Calcola l'intensità di corrente massima che può circolare nel circuito del punto precedente.
d. Stabilisci quando il circuito è percorso dal 70% della corrente massima.

[a)
$$i(t) = \frac{\Delta V}{R} e^{-\frac{t}{RC}}$$
; b) $i(t) = \frac{1}{20} e^{-\frac{t}{5 \cdot 10^{-4}}}$; c) $i_{\text{max}} = 0,05 \text{ A}$; d) $t \simeq 1,78 \cdot 10^{-4} \text{ s}$